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I. INTRODUCTION

FPC-l is a complex combustion catalyst which, when added to liquid petroleum base fuels,
improves the combustion reaction. The primary result is an increase in engine efficiency and a
reduction in fuel consumption. Secondary benefits include; 1) reduced engine smoking and
harmful gaseous emissions, 2) reduced soot blow-by and related engine wear, and 3) reduced
engine hard carbon buildup and related upper cylinder wear. Experience with diesel power
mobile equipment indicates a potential to reduce fuel consumption by 6 % to 9 % with catalyst
fuel treatment.

Kennecott, Utah Copper and URI Corporation personnel jointly agreed to conduct a Carbon
Mass Balance test on the mine haul trucks at the Bingham Canyon Mine in order to quantify
the effect of FPC-l fuel catalyst upon fuel consumption, exhaust smoke density and carbon
monoxide emissions.

II. CONCLUSIONS

(1) After fuel treatment with FPC-l, fuel consumption was reduced in the Bingham
Canyon Mine test fleet by 7.00 % to 7.43 %.

(2) Smoke density was reduced approximately 11% with FPC-l fuel treatment.

(3) Carbon monoxide emissions were reduced approximately 11% with FPC-l fuel
treatment.

(4) The reduction in fuel consumption agrees with the experience of dozens of
mining operators who have used FPC-l for many years. Typical fuel
consumption reductions average approximately 7.0% to 7.5% for operators
using CAT 3500 series engines (see Customer Surveys).

III. RECOMMENDATIONS

Based upon the conclusions itemized above, it is the recommendation of URI Corporation that
Kennecott, Utah Copper begin treating all of it's fuel with FPC-l as soon as possible.
Assuming an average diesel fuel cost of $.70/gallon, fuel usage of 12,000,000 gallons/year,
FPC-l costs at $.023/gallon of treated fuel, and a savings of 7.4 3% on fuel consumption by
treating with FPC-l, Kennecott. Utah Copper will save $368,506 annually in fuel costs alone!
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IV. DISCUSSION OF TEST METHODS

Testing for fuel consumption determination in the field is difficult and time consuming.
Although, it is comparatively easy to monitor gallons used or purchased and hours of engine
operation or miles traveled, it is far more difficult to determine how fuel consumption is
influenced by operating variables, such as load. Laboratory test procedures were developed
for this very reason, to eliminate the uncontrolled operating variables affecting fuel
consumption. UHI has solved the problem of collecting meaningful fuel consumption data by
applying a heretofore laboratory method to field testing. The method uses a carbon mass
balance calculation. The carbon mass balance method is central to the EP A standardized
Federal Test Procedure (FTP) and Highway Fuel Economy Test (HFET), which have been
used since 1974 as the basis for fuel economy labels under the EPA voluntary fuel economy
labeling program (SAE Paper # 750002, B.H. Simpson, Ford Motor Co). It has proven to be
at least as accurate for the determination of fuel consumption as volumetric and gravimetric
methods (ibid).

Carbon Mass Balance

The carbon mass balance eliminates virtually all of the variables associated with field testing
for fuel consumption changes. Under steady-state engine conditions, instead of measuring fuel
flow into the engine (ie., the weight or volume of the fuel), measurements are made of the
exhaust gases leaving the engine. More precisely, the carbon containing gases in the exhaust
are measured.

The method is based upon the Law of Conservation of Matter, which states that atoms can
neither be created nor destroyed, only changed in state, and that the weight or mass of the
products of a reaction will be equal to the reactants themselves. Thus, the reactants and the
products can be "balanced". Since the engine's only source of carbon is the fuel it consumes,
the carbon measured in the exhaust must come from the fuel. By measuring the carbon going
out of the engine in the form of products of combustion, the amount of carbon entering the
engine can be determined.

Carbon Balance Calculation

The carbon leaving the engine is mainly in the form of carbon dioxide (C02), carbon
monoxide (CO), unburned hydrocarbons (HC), and particulate (smoke). By collecting these
data while the engine is operating at a given load and speed (steady-state), the mass flowrate of
the fuel into the engine can be accurately determined. When engine load and speed, along
with other factors influencing fuel consumption (intake pressure and temperature, and fuel
density) are reproduced and/or monitored to make appropriate corrections, the carbon balance
can be used to confidently determine changes in fuel consumption that result from the use of
FPC-l.
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With the carbon balance, engine efficiency is expressed in terms of engine performance factors
(PF). To calculate any change in engine performance, separate measurements are made with
the engine running on baseline fuel (untreated) and FPC-l treated fuel. Any changes are
stated as percentage changes from baseline.

The engine performance factor or PF is a mass flowrate and relates to the length of time
required to consume a volume of fuel. The higher the PF, the longer the time required to
consume the same volume of fuel at a given load and engine speed. Therefore, an increase in
PF equals a reduction in the rate of fuel consumption.

All fuel consumption and smoke density data were monitored and/or recorded by a Kennecott
representative for Bingham Canyon. The exhaust gas data collected during the baseline and
treated fuel carbon balance tests are summarized on the attached computer printouts found in
Appendix 3.

From these data, the volume fraction (VF) of each gas was determined and the average
molecular weight (Mwt) of the exhaust gases computed. Next, the engine performance factor
(pf) or the carbon mass in the exhaust was computed. The pf is fmally corrected for exhaust
gas density and fuel density, yielding a engine performance factor (PF) or carbon mass flow
rate corrected for total exhaust mass flow and fuel energy content.

The PFs are shown on the bottom of the computer printouts found in Appendix 1. The CMB
calculations and legend are found on Figure 1 in Appendix 2. A sample calculation for
illustration purposes is found on Figure 2, also in Appendix 2. The CMB equations were
provided by Dr. Geoffrey J. Germane, PhD. Mechanical Engineering and Chairman of the
Department of Mechanical Engineering for Brigham Young University. Dr. Germane's
resume is attached in Appendix 3.

Additionally, the carbon balance can be used to determine the effect of FPC-l upon harmful
gaseous and particulate emissions, such as CO and smoke. The Bacharach Smoke Spot
method is used to determine smoke density, while the NDIR analyzer measures carbon
monoxide concentration.

Instrumentation

Precision, state-of-the-art instrumentation are used to measure the concentrations of carbon
containing gases in the exhaust stream and other factors related to fuel consumption and engine
performance. The instruments and their purposes are listed below:

1) A Sun Electric SGA-9000 non-dispersive infrared (NDIR) four gas analyzer -
measures the volume percent of C02, CO, and oxygen (02) in the exhaust, and
the parts per million (ppm) of HC.
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2) EPA 11M Calibration Gases - approved calibration gases used to internally
calibrate the NDIR analyzer.

3) A twenty (20) foot sampling train and stainless steel exhaust gas probe -
inserted into the engine exhaust pipe draws a sample of exhaust gases to the
analyzer.

4) A Fluke Model 52 hand held digital thermometer and wet/dry thermocouple
probe - measures exhaust, ambient, and fuel temperature in degrees F.

5) A Dwyer Magnehelic 2000 Series Pressure Gauge and pitot tube - measures
exhaust gas velocity and/or pressure differential.

6) A Monarch Contact/N oncontact digital tachometer and magnetic tape - measures
engine rpm when dash mounted tachometers are unavailable.

7) A specific gravity hydrometer and flask - determines fuel specific gravity
(density).

8) Barometric pressure is acquired from local airport or weather station.

9) A Bacharach Smokemeter and filter paper - determines smoke density.

With the exception of engine speed, fuel density, and ambient readings, all data are collected
by simply inserting probes into the exhaust stream while the engine is running at a fixed rpm
and load, thus eliminating variables created by load. weather. fuel quality changes. etc .. over
time. No modifications or device installation are made to the fuel system, nor are normal
equipment work cycles disrupted.

Carbon Balance Technical Approach

The number of test engines and the quantity of data collected must be large enough to provide
statistical confidence in the data and the results obtained. A minimum of five engines were
tested to increase the size of the database, and improve the confidence level in the results
obtained.

Also, all test engines were fuelled from the same location to facilitate controlled treatment with
FPC-l, and minimum deviation in fuel quality.

Test instruments were calibrated by Kennecott and UHI engineers and technicians, and
readings taken in a manner prescribed by all parties (ie, pitot tube placement, number of
readings, etc.). The basic procedure for testing was as follows:
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1) All instruments were calibrated according to accepted protocol. For each test
run, the SGA-9000 was calibrated using the same bottle of BAR 90 calibration
gases.

2) Before testing began, a sample of fuel was drawn from the fuel tank on each
piece of equipment. Using a hydrometer and wet/dry temperature probe, fuel
specific gravity and temperature were then recorded.

3) Engine hours or mileage were taken from hour meters and/or odometers.

4) Each engine was held at 1200 rpm while in reverse gear and stalled. A throttle
lock was used to hold the engine rpm, preventing rpm swing.

5) During engine stabilization (measured as water temperature, exhaust gas
temperature and pressure velocity), the exhaust gas sampling and temperature
probes were inserted into the exhaust stream. However, no data were taken
until stabilization had occurred. After stabilization, the Autocal button is
depressed (as prescribed by Sun Electric) and, after the LED readouts cleared,
test personnel took multiple readings of carbon dioxide (C02), carbon
monoxide (CO), unburned hydrocarbons (HC), oxygen (02), and smoke, along
with engine speed, exhaust temperature and pressure.

6) Periodically, intake air temperature and pressure (barometric) were recorded.
Temperature readings were taken at the test site. Barometric pressure readings
are acquired from local weather information services.

7) After taking exhaust gas data, smoke density readings were taken using the
Bacharach Smokemeter.

8) All data were recorded until Kennecott and UHI testing personnel are satisfied
that the information was consistent.

9) Back-to-back baseline Carbon Mass Balance tests were conducted to verify
reproducibility.

10) After completing the baselines, the test engines were fuelled with FPC-1 treated
fuel. The engines operated as normal for approximately 500 hours (approx. 21
days), at which time the above procedure were reproduced without alteration,
except for FPC-1 fuel treatment.
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Equipment Tested

Six CAT 793 haul trucks made up the original test fleet. One test truck had an engine
replaced during the test period, therefore five trucks were tested with FPC-l treated fuel.

Correction for Fuel Density

Dr. Germane's formula assumes a fuel density of 0.82 (specific gravity of diesel). URI
engineers measure actual fuel specific gravity by taking samples from the rolling tank on each
truck. Only the treated rate of fuel consumption or PF2 is corrected for changes in fuel
density (energy content). The baseline fuel density is used as the reference. The correction
factor (if applicable) for fuel density is shown on the treated fuel database computer printouts.
In this case, fuel density was greater for the treated tests. The energy content of the volume
per unit volume of fuel injected into the engine would, therefore, be greater. Consequently,
the mass flowrate or rate of fuel consumption for FPC-l treated fuel must be corrected
upward. In other words, the reduction in fuel consumption with FPC-l fuel treatment is
actually smaller than indicated by the exhaust gas readings.

Correction for Barometric Pressure

The barometric pressure is used in the calculation of both the baseline and treated fuel Pfs.
These pressure readings were taken from the National Weather Service for the Northern Utah
area. The weather data are found under Appendix 4. The barometric pressure readings are
also shown on the aforementioned computer printouts.

Change in Exhaust Temperature

With the exception of Unit 254, exhaust gas temperature was higher during the FPC-l treated
fuel tests. This was primarily a result of longer running time during the treated fuel test.
Technicians run the engines until baseline exhaust temperatures are reached, then data
acquisition begins. This can lead to slightly longer running times. With longer the engine
running time, (even after engine stabilization) in some cases, exhaust gas temperature will
increase. This is a result of the metal in the exhaust system heating up, slowing the transfer of
heat from the exhaust gases into metal pipes. Further, the air around the exhaust system also
becomes heated, which also slows heat transfer from the hot gases.

The higher exhaust temperature was not a result of increased water or ambient temperature, as
these were monitored, and were not changed from the baseline. RPM was also constant and
reproduced.

If the baseline exhaust gas temperature were used in place of the treated exhaust temperature in
carbon mass balance calculation, the reduction in fuel consumption is only slightly affected,

8



averaging 7.0 %, rather than 7.4 %. Also, if the Carbon Mass Balance data were handled in
this manner, Unit 254 would not be an anomaly, and could be included in the test sample.

v. DISCUSSION OF TEST RESULTS

Fuel Consumption

The back-to-back baselines verified the test procedure, and the condition of the engines
attributed to reproducible test data. The two trucks in the test fleet that were available for
back-to-back testing (Units 251 and 246) averaged a 2.68% change in fuel consumption
between the two baselines (both units experienced increases in fuel consumption). The reading
reproducibility for the SGA-9000 NDIR analyzer is 2 % of full scale, therefore, the 2.68 %
change is close to the range of instrument error. The data and calculations for the back-to-
back baselines on Units 251 and 246 are found in Appendix 5, Table 1.

Five trucks were tested on FPC-l treated fuel after approximately 500 hours of engine
preconditioning. The range of fuel consumption change for the five trucks was between -
4.66 % and -12.89 %. Prior experience in the laboratory and field indicates the 12.89 %
reduction in fuel consumption is unlikely and therefore, it is considered an anomaly. With the
anomaly removed from the sample, the average reduction in fuel consumption for the entire
fleet is 7.43 % .

The results of the fuel consumption calculations are summarized on Table 2 in Appendix 6.
The raw data are summarized, and the carbon calculations are shown on the Computer
Printouts of the database found in Appendix 1.

Smoke Density

Smoke is a product of incomplete combustion, and as such, is a measure of engine efficiency.
Smoke is simply unburned fuel droplets not consumed during the final phase or tail of
combustion when combustion temperatures are significantly lower, and most of the oxygen in
the combustion chamber has been expended. The FPC-l catalyst improves the oxidation of
these fuel droplets, extracting more useful energy and reducing smoke emissions.

Smoke from the engines tested during the baseline and treated fuel tests was collected using
the Bacharach Smokespot Method. The Bacharach method draws a specific volume of exhaust
gas through a standard 5 micron filter medium. The particulate in the exhaust gas sample
collects on the surface of the filter medium. The surface is darkened by the particulate
according to the density of the particulate in the exhaust sample. The greater the particulate
density, the darker the color. The Bacharach smoke scale ranges from 0 to 9, with 0 being a
white, particulate free filter, and 9 being a black filter (anything off the scale is given a smoke
number of 10).
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The smoke spot numbers are relative smoke density numbers for each engine tested and can be
used to determine any change in smoke emissions when compared to FPC-l treated fuel. A
comparison of the baseline and treated Smoke Numbers (shown on Table 3, Appendix 7)
indicate the use of FPC-l created an average reduction in smoke density of 11.1 %.

Carbon Monoxide Concentration

Like smoke emissions, carbon monoxide (CO) concentrations in the exhaust are also a measure
of engine efficiency. CO is produced in high concentrations early on during the diffusion type
combustion typical to the compression-ignition engine. The complete oxidation of CO to C02
releases significant amounts of energy. Reductions in CO indicate improved mixing of fuel
with air, and improved rates of combustion.

In addition to reducing smoke, FPC-l has long been known to reduce CO, when high
concentrations are present in the combustion gases. For the most part, CO concentrations in
the Kennecott fleet were not excessive, however, where CO emissions were high, CO
concentrations were reduced. Overall reductions in CO concentration for the entire fleet after
FPC-l fuel treatment averaged 11.0% (similar to the smoke reduction). These data are
tabulated on Table 4, Appendix 8.
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1200 727 0.55

1200.000 .565 .050 18.600 6.927 9.280 Mean
.024 .000 1.776 .024 .042 Std Dev

VFC02 VF02 Mtw2 pf2 PF2
.069 .093 29.481 94,130 45,421

45,312 o Change PF= 8.70 %

•• A positive change in PF equates to a reduction in fuel consumption.

719.100

0.05
0.05

o 5.152

VFHC
1.86E-05

VFCO
0.0005

Performance factor adjusted for fuel density:

19 6.94
23 6.99

9.3
9.3
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Figure 1
CARBON MASS BALANCE FORMULAE

ASSUMPTIONS: C12H26 and SG = 0.82
Time is constant
Load is constant

DATA: Mwt
pfl
pf2
PF1
PF2
CFM
SG
VF
d
Pv
PB

Te

EOUATIONS:

Mwt =

= Molecular Weight
= Calculated Performance Factor (Baseline)
= Calculated Performance Factor (Treated)
= Performance Factor (adjusted for Baseline exhaust mass)
= Performance Factor (adjusted for Treated exhaust mass)
= Volumetric Flow Rate of the Exhaust
= Specific Gravity of the Fuel
= Volume Fraction
= Exhaust stack diameter in inches
= Velocity pressure in inches of H20
= Barometric pressure in inches of mercury
= Exhaust temperature of
VFHC = "reading" -;- 1,000,000
VFCO = "reading" -;- 100
VFC02 = "reading" -;- 100
VF02 = "reading" -;- 100

(VFHC)(86) + (VFCO)(28) + (VFC02) (44) + (VF02)(32) + [(1-
VFHC- VFCO- VFC02- VF02)(28)]

pfl or pf2 =

CFM =

PF1 or PF2 =

3099.6 x Mwt
86(VFHC) + 13. 89(VFCO) + 13. 89(VFC02)

(dI2}2n( 1096.2
144

~ )
1.325(PBIET +460}

pf x (Te+460)
CFM

FUEL ECONOMY:
PERCENT INCREASE (OR DECREASE)

PF2 - PF1 x 100
PF1



Figure 2.

SAMPLE CALCULATION FOR THE CARBON MASS BALANCE

BASELINE:

Equation 1 (Volume Fractions)

VFHC = 13.20/1,000,000
= 0.0000132

VFCO = 0.017/100
= 0.00017

= 1.937/100
= 0.01937

= 17.10/100
= 0.171

Equation 2 (Molecular Weight)

Mwtl =(0.0000132)(86) +(0.00017)(28)+(0.01937)(44)+(0.171)(32)
+ [(1-0.0000132-0.00017-0.01937-0.171)(28)]

Mwtl =28.995

Equation 3 (Calculated Performance Factor)

pfl = 3099.6 x 28.995
86(0.0000132)+ 13.89(0.00017)+ 13.89(0.01937)

pfl = 329,809



Equation 4 (CFM Calculations)

CFM = Idl2)2rr( 1096.2 Pv )
144 1.325IPB/ET+460)

d = Exhaust stack diameter in inches
Pv = Velocity pressure in inches of H20
PH =Barometric pressure in inches of mercury
Te = Exhaust temperature of

CFM =
110/2)2rr( 1096.2

144 1.325(30.00/313.100 +4601
.80 )

CFM =2358.37

Equation 5 (Corrected Performance Factor)

PFI = 329.809(313.1 deg F + 460)
2358.37 CFM

PFI = 108,115

TREATED:

Equation 1 (Volume Fractions)

VFHC = 14.6/1,000,000
= 0.0000146

VFCO = .013/100
= 0.00013

= 1.826/100
= 0.01826

= 17.17/100
= 0.1717



Equation 2 (Molecular Weight)

Mwt2 =(0.0000146)(86) +(0.00013)(28) +(0.01826)(44) +(0.1717)(32)
+ [(1-0.0000146-0.00013-0.01826-0.1717)(28)]

Mwt2 = 28.980

Equation 3 (Calculated Performance Factor)

pf2 = 3099.6 x 28.980
86(0.0000146)+ 13.89(0.00013)+ 13.89(0.01826)

pf2 = 349,927

CFM =

(CFM Calculations)

ItI(2)211( 1096.2
144

Equation 4

d
Pv
PB
Te

=Exhaust stack diameter in inches
= Velocity pressure in inches of H20
=Barometric pressure in inches of mercury
=Exhaust temperature OF

(1012)211( 1096.2
CFM = 144

.775 )
1.325129.861309.02 +460)

CFM = 2320.51

Equation 5 (Corrected Performance Factor)

PF2 = 349.927(309.02 deg F + 460)
2320.51 CFM

= 115,966



Fuel Specific Gravity Correction Factor

Baseline Fuel Specific Gravity - Treated Fuel Specific Gravity IBaseline Fuel
Specific Gravity + 1

.840-.837/.840+ 1=1.0036

PF2 = 115,966 x Specific Gravity Correction

PF2 = 115,966 x 1.0036

PF2 = 116,384

Equation 6 (Percent Change in Engine Performance Factor:)

% Change PF = PF2 - PFI x 100
PFI

% Change PF = [(116,384 - 108,115)/108,115](100)

= +7.65

Note: A positive change in PF equates to a reduction in fuel consumption.
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Figure 3. Barometric Pressure Readings from Provo, Utah Area

Date Time Baro
2-27-95 9:00 30.03

10:00 30.03
12:00 30.09
13:00 30.07

3-15-95 8:00 30.10
9:00 30.13

10:00 30.13
11:00 30.13
12:00 30.12
13:00 30.09
14:00 30.07
15:00 30.05

4-10-95 8:00 30.03
9:00 30.03

10:00 30.04
11:00 30.05
12:00 30.04

4-11-95 9:00 30.08
10:00 30.08
11:00 30.09
12:00 30.08
13:00 30.07
14:00 30.05
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Table 1. Bingham Canyon Test Fleet Baseline PFs (mass flow rates)

Unit No. Baseline 1 PF Baseline 2 PF % ChI:

251
246

33,144
38,472

32,517
37,265

- 2.19
- 3.17

Ave. Chg for Trucks Tested: - 2.68

Note1: A decrease (-) in PF indicates an increase in fuel consumption.

Note 2: The 2.68 % increase in fuel consumption between the two baseline tests for the same
units is not significant given the accuracy of the NDIR instrument (+2 % of full scale
reproducibility) and indicates that the baselines were reproduced only.
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Table 2: Comparison of Rates of Fuel Consumption (Engine
Performance Factors)

Unit No. Baseline PF Treated *PF %Change

251 33,144 35,950 +8.47
254 41,686 45,312 +8.70
246 38,472 40,265 +4.66
242 32,797 35,768 +7.88

**241 31,183 35,415 + 12.89

* PF is an abbreviation for "Performance Factor". The Performance Factor is a mass flowrate
that is related to the length of time required to consume a given volume of fuel. The larger the
PF, the longer the time required to consume a given volume of fuel at the same engine load,
therefore, a positive change in PF equates to a reduction in fuel consumption.

** Statistical anomaly not included in the fleet average.

The fuel consumption reductions shown in Table 2 (average 7.43 %) have been corrected for
the effects of intake air pressure (barometric) and temperature (ambient), and fuel density
(measured as specific gravity).

Unit 250 is not included in the test fleet due to an engine replacement. In fact, the engine was
being replaced during the treated fuel test period (April 10 and 11).
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Table 3: Comparison of Smoke Spot Numbers (Changes in Smoke
Density)

Unit No. Baseline SS# Treated *SS# % Change

251 8.0 8.0 0.0
254 10.0 7.0 30.0
246 7.5 7.0 6.7
242 7.5 7.0 6.7
241 7.5 7.0 6.7

Fleet avg. smoke readings & reduction: 8.1 7.2 11.1

* SS# is the abbreviation for Smokespot Number. The Smokespot Number is a measure of
relative smoke density using the Bacharach Smokespot scale and test method. The higher the
SS#, the greater the smoke density.
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Table 4: Comparison of Carbon Monoxide Emissions

Unit No. Baseline CO% Treated CO% %Chan2e

251 0.085 0.050 -41.18
254 0.047 0.067 +42.55
246 0.049 0.053 + 8.16
242 0.032 0.027 -15.62
241 0.061 0.050 -18.03

Fleet Average: 0.055 0.049 -10.99
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Barometric Pressure: "]),01" Inches of Mercury
Intake Air Temperature: COF) Start Time: .2: ~ 5"" P IYJ
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Names of Customer Personnel Participating in Test:
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Carbon Mass Balance Field Data Form

Company: ~/; :.:,./c') t

Test Portion: Baseline: V-

,:) I "

Location: '\:.. ' ',: I . , Test Date: ;:,/ ( .7 ,h ,)

Treated: Exhaust Stack Diameter: &Inches

Engine Make/Model: cst :;:;I (, Miles/Hours: 1/ 7r:.,O,l.j LD,#: (25:;
Type of Equipment: :l Lj' (:, I H'-:,v l r;-,-\~-,-,-\,-=-C-Lt=_- _

@:Fue ISpecific Gravity: _--=-' ..l.Lq~;J,-,"O-,-) __
Barometric Pressure: ?;D ,01 Inches of Mercury
Intake Air Temperature: (OF) Start Time:
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Names of Customer Personnel Participating in Test:

Signature of Technicians:
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Carbon Mass Balance Field Data Form

Company: tit,'.\(r'(,h /'Location: (, '/, i'i';"\ Test Date: ~'/,,':.//\,
Test Portion: Baseline: '7 Treated: ' Exhaust Stack Diameter: ~Inches

Engine Make/Model: (AT, 7--;;GJ i"L- Miles/Hours:(53<~7 11.0.11: 'A. 5"''-/
Type of Equipment: (=1 (;'.'; ! -or (J c. ! <:.._

Fuel Specific Gravity: . J( 7/i
Barometric Pressure: 10 ,o{ Inches of Mercury
Intake Air Temperature: (OF) Start Time: _
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Names of Customer Personnel Participating in Test:

Signature of Technicians:
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Carbon Mass Balance Fi Id Data Form

" Company: 10/~
Test Portion: Baseline: _

Location: ~ Test Date: 1-../ / (ofe; ~---'~----'---'---
Treated: Exhaust Stack Diameter: _Inches

Engine Make/Model: Miles/Hours: 2\J"W?:v I.D.#: 2fl
Type of Equipment: ----,,---__

Fuel Specific.Gravity: ., ff19" @: 'Sq,cf COF)
Barometric Pressure: Inches of Mercury 1 I ( "', J
Intake Air Temperature: (OF) Start Time: _
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Carbon Mass Balance Field Data Form

Company', ~/~c.~.r L ti . /,- - or; T D b~ h~oca IOn: - ,/1/6"- ""- ~ est ate:;, /'v /7./
Test Portion: Baseline:_~_ Treated: Exhaust Stack Diamet?r~ Inches'

Engine Make/Model:
Type of Equipment:

~ r-I ,'2 tq
Fuel Specific Gravity: __ --'=t2~,J_+_~--
Barometric Pressure: Inches of Mercury
Intake Air Temperature: p .V (OF) Start Time: _
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Names of Customer Personnel Participating in Test:

Carbon Mass Balance Field Data Form

Company: d~;rcc.,}-/ Location: &lill:'e;,flr- C"'!"W---I Test Date:--,-:;~~'~~
Test Portion: Baseline:___ Treated: i/ Exhaust Stack Diametlr':

Engine Make/Model: Miles/Hours: I.D.#: 2y(.
Type of Equipment: _

" .
Fuel Specific Gravity: ~ (.3 i-@: {; cr( '-Q3(OF
Barometric Pressure: Inches of Mercury . '1-, ( - n
Intake Air Temperature: (OF) Start Time: '

Signature of Technicians:



Carbon Mass Balance Field Data Form

Company: /aAl~(£r;: Location: ~ A., .1 W--t0·..-rTest Date: r-M -'
Test Portion: Baseline: Treated: Exhaust Stack Diameter:La.Jnches

Engine Make/Model: &- f,;/z.., - Miles/Hours: IU3U I.D.#:/J/ .11( '/
Type of Equipment: 7/"1 /-4<;:/ Z~kiY(-../ i S~
Fuel Specific Gravity: .<6. 7.jJ @:-'.i1.i (oF)
Barometric Pressure: _~ Inches of Mercury t1,. 30
Intake Air Temperature: a (l (OF) Start Time: __ '-",--_
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Carbon Mass Balance Field Data Form

Company: Location: Test Date: _
Test Portion: Baseline: Treated: Exhaust Stack Diameter: _Inches ~

/i (7:F 2-Engine Make/Model: Miles/Hours: I.D.#: ;<s- . ,,/
Type of Equipment: 'gLl.«
Fuel Specific Gravity:
Barometric Pressure: Inches of Mercury
Intake Air Temperature: COF) Start Time: _
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Signature of Technicians:

Names of Customer Personnel Participating in Test:
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Carbon Mass Balance Field Data Form

Company: 10.jJ~ Location: '"l6i /~~ Test Date: qI ( I A5--
Test Portion: Baseline: . Treated: ~ Exhaust Stack Diameter: _Inches

Engine Make/Model: MileslHours: 0/)' (rqvI.D.#:;; SLj
Type of Equipment: _

Fuel Specific Gravity: _--,-t -="'{-'\.o3<-41 _
Barometric Pressure: Inches of Mercury
Intake Air Temperature: (j ~. cJ COF) Start Time:
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